ePrivacy and GPDR Cookie Consent by Cookie Consent

🍂 Autumn reading time! Let our AI Librarian find your perfect cozy read 🫖

Zero-Symmetric Graphs

by David L. Powers , H. S. M. Coxeter , Roberto Frucht

📖 The Scoop

Zero-Symmetric Graphs: Trivalent Graphical Regular Representations of Groups describes the zero-symmetric graphs with not more than 120 vertices.The graphs considered in this text are finite, connected, vertex-transitive and trivalent. This book is organized into three parts encompassing 25 chapters. The first part reviews the different classes of zero-symmetric graphs, according to the number of essentially different edges incident at each vertex, namely, the S, T, and Z classes. The remaining two parts discuss the theorem and characteristics of type 1Z and 3Z graphs. These parts explore Cayley graphs of specific groups, including the parameters of Cayley graphs of groups. This book will prove useful to mathematicians, computer scientists, and researchers.

Genre: Mathematics / General (fancy, right?)

🤖Next read AI recommendation

AI Librarian

Greetings, bookworm! I'm Robo Ratel, your AI librarian extraordinaire, ready to uncover literary treasures after your journey through "Zero-Symmetric Graphs" by David L. Powers! 📚✨

AI Librarian

AI Librarian

Eureka! I've unearthed some literary gems just for you! Scroll down to discover your next favorite read. Happy book hunting! 📖😊

Reading Playlist for Zero-Symmetric Graphs

Enhance your reading experience with our curated music playlist. It's like a soundtrack for your book adventure! 🎵📚

🎶 A Note About Our Spotify Integration

Hey book lovers! We're working on bringing you the full power of Spotify integration. 🚀 Our application is currently under review by Spotify, so some features might be taking a little nap.

Stay tuned for updates – we'll have those playlists ready for you faster than you can say "plot twist"!

Login with Spotify

🎲AI Book Insights

AI Librarian

Curious about "Zero-Symmetric Graphs" by David L. Powers? Let our AI librarian give you personalized insights! 🔮📚