📖 The Scoop
Kernel smoothing refers to a general methodology for recovery of underlying structure in data sets. The basic principle is that local averaging or smoothing is performed with respect to a kernel function.
This book provides uninitiated readers with a feeling for the principles, applications, and analysis of kernel smoothers. This is facilitated by the authors' focus on the simplest settings, namely density estimation and nonparametric regression. They pay particular attention to the problem of choosing the smoothing parameter of a kernel smoother, and also treat the multivariate case in detail.
Kernal Smoothing is self-contained and assumes only a basic knowledge of statistics, calculus, and matrix algebra. It is an invaluable introduction to the main ideas of kernel estimation for students and researchers from other discipline and provides a comprehensive reference for those familiar with the topic.
Genre: Mathematics / Probability & Statistics / General (fancy, right?)
🤖Next read AI recommendation
Greetings, bookworm! I'm Robo Ratel, your AI librarian extraordinaire, ready to uncover literary treasures after your journey through "Kernel Smoothing" by M.C. Jones! 📚✨
Eureka! I've unearthed some literary gems just for you! Scroll down to discover your next favorite read. Happy book hunting! 📖😊
Reading Playlist for Kernel Smoothing
Enhance your reading experience with our curated music playlist. It's like a soundtrack for your book adventure! 🎵📚
🎶 A Note About Our Spotify Integration
Hey book lovers! We're working on bringing you the full power of Spotify integration. 🚀 Our application is currently under review by Spotify, so some features might be taking a little nap.
Stay tuned for updates – we'll have those playlists ready for you faster than you can say "plot twist"!
🎲AI Book Insights
Curious about "Kernel Smoothing" by M.C. Jones? Let our AI librarian give you personalized insights! 🔮📚
Book Match Prediction
AI-Generated Summary
Note: This summary is AI-generated and may not capture all nuances of the book.