📖 The Scoop
We document the forecasting gains achieved by incorporating measures of signed, finite and infinite jumps in forecasting the volatility of equity prices, using high-frequency data from 2000 to 2016. We consider the SPY and 20 stocks that vary by sector, volume and degree of jump activity. We use extended HAR-RV models, and consider different frequencies (5, 60, and 300 seconds), forecast horizons (1, 5, 22, and 66 days) and the use of standard and robust-to-noise volatility and threshold bipower variation measures. Incorporating signed finite and infinite jumps generates significantly better real-time forecasts than the HAR-RV model, although no single extended model dominates. In general, standard volatility measures at the 300-second frequency generate the smallest real-time mean squared forecast errors. Finally, the forecasts from simple model averages generally outperform forecasts from the single best model.
Genre: No Category (fancy, right?)
🤖Next read AI recommendation
Greetings, bookworm! I'm Robo Ratel, your AI librarian extraordinaire, ready to uncover literary treasures after your journey through "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility" by Anthony Murphy! 📚✨
Eureka! I've unearthed some literary gems just for you! Scroll down to discover your next favorite read. Happy book hunting! 📖😊
Reading Playlist for The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility
Enhance your reading experience with our curated music playlist. It's like a soundtrack for your book adventure! 🎵📚
🎶 A Note About Our Spotify Integration
Hey book lovers! We're working on bringing you the full power of Spotify integration. 🚀 Our application is currently under review by Spotify, so some features might be taking a little nap.
Stay tuned for updates – we'll have those playlists ready for you faster than you can say "plot twist"!
🎲AI Book Insights
Curious about "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility" by Anthony Murphy? Let our AI librarian give you personalized insights! 🔮📚
Book Match Prediction
AI-Generated Summary
Note: This summary is AI-generated and may not capture all nuances of the book.