๐ The Scoop
Understand basic to advanced deep learning algorithms, the mathematical principles behind them, and their practical applications.
Key FeaturesGet up-to-speed with building your own neural networks from scratch Gain insights into the mathematical principles behind deep learning algorithmsImplement popular deep learning algorithms such as CNNs, RNNs, and more using TensorFlowBook DescriptionDeep learning is one of the most popular domains in the AI space, allowing you to develop multi-layered models of varying complexities.
This book introduces you to popular deep learning algorithmsโfrom basic to advancedโand shows you how to implement them from scratch using TensorFlow. Throughout the book, you will gain insights into each algorithm, the mathematical principles behind it, and how to implement it in the best possible manner. The book starts by explaining how you can build your own neural networks, followed by introducing you to TensorFlow, the powerful Python-based library for machine learning and deep learning. Moving on, you will get up to speed with gradient descent variants, such as NAG, AMSGrad, AdaDelta, Adam, and Nadam. The book will then provide you with insights into RNNs and LSTM and how to generate song lyrics with RNN. Next, you will master the math for convolutional and capsule networks, widely used for image recognition tasks. Then you learn how machines understand the semantics of words and documents using CBOW, skip-gram, and PV-DM. Afterward, you will explore various GANs, including InfoGAN and LSGAN, and autoencoders, such as contractive autoencoders and VAE.
By the end of this book, you will be equipped with all the skills you need to implement deep learning in your own projects.
What you will learnImplement basic-to-advanced deep learning algorithmsMaster the mathematics behind deep learning algorithmsBecome familiar with gradient descent and its variants, such as AMSGrad, AdaDelta, Adam, and NadamImplement recurrent networks, such as RNN, LSTM, GRU, and seq2seq modelsUnderstand how machines interpret images using CNN and capsule networksImplement different types of generative adversarial network, such as CGAN, CycleGAN, and StackGANExplore various types of autoencoder, such as Sparse autoencoders, DAE, CAE, and VAEWho this book is forIf you are a machine learning engineer, data scientist, AI developer, or simply want to focus on neural networks and deep learning, this book is for you. Those who are completely new to deep learning, but have some experience in machine learning and Python programming, will also find the book very helpful.
Genre: Computers / General (fancy, right?)
๐คNext read AI recommendation
Greetings, bookworm! I'm Robo Ratel, your AI librarian extraordinaire, ready to uncover literary treasures after your journey through "Hands-On Deep Learning Algorithms with Python" by Sudharsan Ravichandiran! ๐โจ
Eureka! I've unearthed some literary gems just for you! Scroll down to discover your next favorite read. Happy book hunting! ๐๐
Reading Playlist for Hands-On Deep Learning Algorithms with Python
Enhance your reading experience with our curated music playlist. It's like a soundtrack for your book adventure! ๐ต๐
๐ถ A Note About Our Spotify Integration
Hey book lovers! We're working on bringing you the full power of Spotify integration. ๐ Our application is currently under review by Spotify, so some features might be taking a little nap.
Stay tuned for updates โ we'll have those playlists ready for you faster than you can say "plot twist"!
๐ฒAI Book Insights
Curious about "Hands-On Deep Learning Algorithms with Python" by Sudharsan Ravichandiran? Let our AI librarian give you personalized insights! ๐ฎ๐
Book Match Prediction
AI-Generated Summary
Note: This summary is AI-generated and may not capture all nuances of the book.