📖 The Scoop
This book provides a comprehensive and accessible presentation of algorithms for solving continuous optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. It places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning.
The 3rd edition brings the book in closer harmony with the companion works Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Convex Analysis and Optimization (Athena Scientific, 2003), and Network Optimization (Athena Scientific, 1998).
These works are complementary in that they deal primarily with convex, possibly nondifferentiable, optimization problems and rely on convex analysis. By contrast the nonlinear programming book focuses primarily on analytical and computational methods for possibly nonconvex differentiable problems. It relies primarily on calculus and variational analysis, yet it still contains a detailed presentation of duality theory and its uses for both convex and nonconvex problems.
This on-line edition contains detailed solutions to all the theoretical book exercises.
Among its special features, the book:
Provides extensive coverage of iterative optimization methods within a unifying framework
Covers in depth duality theory from both a variational and a geometric point of view
Provides a detailed treatment of interior point methods for linear programming
Includes much new material on a number of topics, such as proximal algorithms, alternating direction methods of multipliers, and conic programming
Focuses on large-scale optimization topics of much current interest, such as first order methods, incremental methods, and distributed asynchronous computation, and their applications in machine learning, signal processing, neural network training, and big data applications
Includes a large number of examples and exercises
Was developed through extensive classroom use in first-year graduate courses
Genre: Mathematics / Optimization (fancy, right?)
🤖Next read AI recommendation
Greetings, bookworm! I'm Robo Ratel, your AI librarian extraordinaire, ready to uncover literary treasures after your journey through "Nonlinear Programming" by Dimitri Bertsekas! 📚✨
Eureka! I've unearthed some literary gems just for you! Scroll down to discover your next favorite read. Happy book hunting! 📖😊
Reading Playlist for Nonlinear Programming
Enhance your reading experience with our curated music playlist. It's like a soundtrack for your book adventure! 🎵📚
🎶 A Note About Our Spotify Integration
Hey book lovers! We're working on bringing you the full power of Spotify integration. 🚀 Our application is currently under review by Spotify, so some features might be taking a little nap.
Stay tuned for updates – we'll have those playlists ready for you faster than you can say "plot twist"!
🎲AI Book Insights
Curious about "Nonlinear Programming" by Dimitri Bertsekas? Let our AI librarian give you personalized insights! 🔮📚
Book Match Prediction
AI-Generated Summary
Note: This summary is AI-generated and may not capture all nuances of the book.