ePrivacy and GPDR Cookie Consent by Cookie Consent

๐Ÿฆƒ Cozy up with autumn reads! Let our AI Librarian pick your perfect fireside book ๐Ÿ

Nonnegative Matrix and Tensor Factorizations

by Andrzej Cichocki , Anh Huy Phan , Rafal Zdunek , Shun-ichi Amari

๐Ÿ“– The Scoop

This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMFโ€™s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models.

Key features:

  • Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authorsโ€™ own recently developed techniques in the subject area.
  • Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms.
  • Provides a comparative analysis of the different methods in order to identify approximation error and complexity.
  • Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book.

The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.

Genre: Science / Waves & Wave Mechanics (fancy, right?)

๐Ÿค–Next read AI recommendation

AI Librarian

Greetings, bookworm! I'm Robo Ratel, your AI librarian extraordinaire, ready to uncover literary treasures after your journey through "Nonnegative Matrix and Tensor Factorizations" by Andrzej Cichocki! ๐Ÿ“šโœจ

AI Librarian

AI Librarian

Eureka! I've unearthed some literary gems just for you! Scroll down to discover your next favorite read. Happy book hunting! ๐Ÿ“–๐Ÿ˜Š

Reading Playlist for Nonnegative Matrix and Tensor Factorizations

Enhance your reading experience with our curated music playlist. It's like a soundtrack for your book adventure! ๐ŸŽต๐Ÿ“š

๐ŸŽถ A Note About Our Spotify Integration

Hey book lovers! We're working on bringing you the full power of Spotify integration. ๐Ÿš€ Our application is currently under review by Spotify, so some features might be taking a little nap.

Stay tuned for updates โ€“ we'll have those playlists ready for you faster than you can say "plot twist"!

Login with Spotify

๐ŸŽฒAI Book Insights

AI Librarian

Curious about "Nonnegative Matrix and Tensor Factorizations" by Andrzej Cichocki? Let our AI librarian give you personalized insights! ๐Ÿ”ฎ๐Ÿ“š