ePrivacy and GPDR Cookie Consent by Cookie Consent

๐Ÿฆƒ Cozy up with autumn reads! Let our AI Librarian pick your perfect fireside book ๐Ÿ

Quality Estimation for Machine Translation

by Carolina Scarton , Gustavo Henrique Paetzold , Lucia Specia

๐Ÿ“– The Scoop

Many applications within natural language processing involve performing text-to-text transformations, i.e., given a text in natural language as input, systems are required to produce a version of this text (e.g., a translation), also in natural language, as output. Automatically evaluating the output of such systems is an important component in developing text-to-text applications. Two approaches have been proposed for this problem: (i) to compare the system outputs against one or more reference outputs using string matching-based evaluation metrics and (ii) to build models based on human feedback to predict the quality of system outputs without reference texts. Despite their popularity, reference-based evaluation metrics are faced with the challenge that multiple good (and bad) quality outputs can be produced by text-to-text approaches for the same input. This variation is very hard to capture, even with multiple reference texts. In addition, reference-based metrics cannot be used in production (e.g., online machine translation systems), when systems are expected to produce outputs for any unseen input. In this book, we focus on the second set of metrics, so-called Quality Estimation (QE) metrics, where the goal is to provide an estimate on how good or reliable the texts produced by an application are without access to gold-standard outputs. QE enables different types of evaluation that can target different types of users and applications. Machine learning techniques are used to build QE models with various types of quality labels and explicit features or learnt representations, which can then predict the quality of unseen system outputs. This book describes the topic of QE for text-to-text applications, covering quality labels, features, algorithms, evaluation, uses, and state-of-the-art approaches. It focuses on machine translation as application, since this represents most of the QE work done to date. It also briefly describes QE for several other applications, including text simplification, text summarization, grammatical error correction, and natural language generation.

Genre: Computers / Artificial Intelligence / Natural Language Processing (fancy, right?)

๐Ÿค–Next read AI recommendation

AI Librarian

Greetings, bookworm! I'm Robo Ratel, your AI librarian extraordinaire, ready to uncover literary treasures after your journey through "Quality Estimation for Machine Translation" by Carolina Scarton! ๐Ÿ“šโœจ

AI Librarian

AI Librarian

Eureka! I've unearthed some literary gems just for you! Scroll down to discover your next favorite read. Happy book hunting! ๐Ÿ“–๐Ÿ˜Š

Reading Playlist for Quality Estimation for Machine Translation

Enhance your reading experience with our curated music playlist. It's like a soundtrack for your book adventure! ๐ŸŽต๐Ÿ“š

๐ŸŽถ A Note About Our Spotify Integration

Hey book lovers! We're working on bringing you the full power of Spotify integration. ๐Ÿš€ Our application is currently under review by Spotify, so some features might be taking a little nap.

Stay tuned for updates โ€“ we'll have those playlists ready for you faster than you can say "plot twist"!

Login with Spotify

๐ŸŽฒAI Book Insights

AI Librarian

Curious about "Quality Estimation for Machine Translation" by Carolina Scarton? Let our AI librarian give you personalized insights! ๐Ÿ”ฎ๐Ÿ“š