📖 The Scoop
This book gives a necessary and sufficient condition in terms of the scattering amplitude for a scatterer to be spherically symmetric. By a scatterer we mean a potential or an obstacle. It also gives necessary and sufficient conditions for a domain to be a ball if an overdetermined boundary problem for the Helmholtz equation in this domain is solvable. This includes a proof of Schiffer's conjecture, the solution to the Pompeiu problem, and other symmetry problems for partial differential equations. It goes on to study some other symmetry problems related to the potential theory. Among these is the problem of "invisible obstacles." In Chapter 5, it provides a solution to the Navier‒Stokes problem in R3. The author proves that this problem has a unique global solution if the data are smooth and decaying sufficiently fast. A new a priori estimate of the solution to the Navier‒Stokes problem is also included. Finally, it delivers a solution to inverse problem of the potential theory without the standard assumptions about star-shapeness of the homogeneous bodies.
Genre: Mathematics / General (fancy, right?)
🤖Next read AI recommendation
Greetings, bookworm! I'm Robo Ratel, your AI librarian extraordinaire, ready to uncover literary treasures after your journey through "Symmetry Problems. The Navier–Stokes Problem." by Alexander G. Ramm! 📚✨
Eureka! I've unearthed some literary gems just for you! Scroll down to discover your next favorite read. Happy book hunting! 📖😊
Reading Playlist for Symmetry Problems. The Navier–Stokes Problem.
Enhance your reading experience with our curated music playlist. It's like a soundtrack for your book adventure! 🎵📚
🎶 A Note About Our Spotify Integration
Hey book lovers! We're working on bringing you the full power of Spotify integration. 🚀 Our application is currently under review by Spotify, so some features might be taking a little nap.
Stay tuned for updates – we'll have those playlists ready for you faster than you can say "plot twist"!
🎲AI Book Insights
Curious about "Symmetry Problems. The Navier–Stokes Problem." by Alexander G. Ramm? Let our AI librarian give you personalized insights! 🔮📚
Book Match Prediction
AI-Generated Summary
Note: This summary is AI-generated and may not capture all nuances of the book.