ePrivacy and GPDR Cookie Consent by Cookie Consent

๐Ÿฆƒ Cozy up with autumn reads! Let our AI Librarian pick your perfect fireside book ๐Ÿ

Deep Reinforcement Learning with Python

by Sudharsan Ravichandiran

๐Ÿ“– The Scoop

An example-rich guide for beginners to start their reinforcement and deep reinforcement learning journey with state-of-the-art distinct algorithms

Key FeaturesCovers a vast spectrum of basic-to-advanced RL algorithms with mathematical explanations of each algorithmLearn how to implement algorithms with code by following examples with line-by-line explanationsExplore the latest RL methodologies such as DDPG, PPO, and the use of expert demonstrationsBook Description

With significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit.

In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples.

The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAIโ€™s baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research.

By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects.

What you will learnUnderstand core RL concepts including the methodologies, math, and codeTrain an agent to solve Blackjack, FrozenLake, and many other problems using OpenAI GymTrain an agent to play Ms Pac-Man using a Deep Q NetworkLearn policy-based, value-based, and actor-critic methodsMaster the math behind DDPG, TD3, TRPO, PPO, and many othersExplore new avenues such as the distributional RL, meta RL, and inverse RLUse Stable Baselines to train an agent to walk and play Atari gamesWho this book is for

If youโ€™re a machine learning developer with little or no experience with neural networks interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you.

Basic familiarity with linear algebra, calculus, and the Python programming language is required. Some experience with TensorFlow would be a plus.

Genre: Mathematics / Discrete Mathematics (fancy, right?)

๐Ÿค–Next read AI recommendation

AI Librarian

Greetings, bookworm! I'm Robo Ratel, your AI librarian extraordinaire, ready to uncover literary treasures after your journey through "Deep Reinforcement Learning with Python" by Sudharsan Ravichandiran! ๐Ÿ“šโœจ

AI Librarian

AI Librarian

Eureka! I've unearthed some literary gems just for you! Scroll down to discover your next favorite read. Happy book hunting! ๐Ÿ“–๐Ÿ˜Š

Reading Playlist for Deep Reinforcement Learning with Python

Enhance your reading experience with our curated music playlist. It's like a soundtrack for your book adventure! ๐ŸŽต๐Ÿ“š

๐ŸŽถ A Note About Our Spotify Integration

Hey book lovers! We're working on bringing you the full power of Spotify integration. ๐Ÿš€ Our application is currently under review by Spotify, so some features might be taking a little nap.

Stay tuned for updates โ€“ we'll have those playlists ready for you faster than you can say "plot twist"!

Login with Spotify

๐ŸŽฒAI Book Insights

AI Librarian

Curious about "Deep Reinforcement Learning with Python" by Sudharsan Ravichandiran? Let our AI librarian give you personalized insights! ๐Ÿ”ฎ๐Ÿ“š